
JOURNAL OF COMPUTATIONAL PHYSICS 95, 359-386 (1991) 

Chebyshev Collocation Solutions of the 
Navier-Stokes Equations Using Multi-domain Decomposition 

and Finite Element Preconditioning 

P. DEMARET* AND M. 0. DEVILLE 

Universitt! Catholique de Louvain, 
Unite de Mkanique Appliquke, Louvain-La-Neuve, Belgium 

Received April 4, 1989; revised February 8, 1990 

The steady Navier-Stokes equations are solved using series of basis functions involving 
Chebyshev polynomials. The projection method is a collocation scheme. A Newton’s lineariza- 
tion is performed in order to obtain a set of algebraic equations. As the matrix system is ill 
conditioned, the collocation technique is preconditioned by a standard Galerkin finite element 
method using a 9-nodes Lagrangian element which presents decisive advantages: sparsity, 
reduced condition number, easy treatment of complicated geometries. To handle nontrivial 
geometries in the collocation process, a domain decomposition is set up. The treatment of 
interface conditions is fully described. Several test problems like the regularized driven square 
cavity and the backward facing step are discussed to show the abilities of the present 
algorithm. 6 1991 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, the steady Navier-Stokes equations are solved in primitive 
variables formulation using basis functions involving Chebyshev polynomials. 
Spectral schemes have various choices of projection methods: Galerkin, Tau, collo- 
cation [2]. Here, we deal with the collocation technique because the computation 
is fully performed in the physical domain. Moreover, collocation is able to treat 
nonconstant coefficients as well as to set up easily the discrete equations. 

Orthogonal collocation is a global process and produces full matrices. For 
second-order elliptic problems, Deville and Mund [II] showed the structure of 
such matrices. As they present a condition number O(N4) if N is the number of 
degrees of freedom for a one-dimensional problem, the collocation method is 
preconditioned. Two major families of preconditioners appeared in the literature 
over the last decade. Finite differencing (FD) first was proposed independently by 
Y. Morchoisne [ 191 and S. A. Orszag [20 J. FD preconditioning was used primarily 
with the Richardson iterative method. It was shown by Haldenwang et al. [ 131 that 
for the Laplace equation, the spectrum of La;’ L, is in between 1 and 7t2/4, where 
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L,, denotes the approximate FD operator and L, the collocation approximation of 
the continuous L operator. Therefore, the Richardson method must be under- 
relaxed. In the mid-eighties, Canuto and Quarteroni [4] and Deville-Mund [lo] 
performed finite element (FE) preconditioning for elliptic problems. Deville and 
Mund [ 1 l] demonstrated numerical evidence of the FE superiority as precondi- 
tioner compared to FD. It is now known that for linear elements, the presence of 
the mass matrix helps reducing the spectrum of Lap' L, by a factor of 3. FE 
preconditioning converges (at least) twice as fast as FD preconditioning [2]. In the 
context of standard Galerkin FE methods, Demaret and Deville [7] showed that 
for the Stokes equations, the classical 9-nodes Lagrangian element is the best 
preconditioner for the global solution coupling the momentum and continuity 
equations. 

Up to now, low-order preconditioning was used to speed up the iterative con- 
vergence of high-order methods. However, one can adopt another point of view 
which is the iterative defect correction method [ 111. Here, the high-order residual 
evaluation accelerates the discretization error reduction and yields improved 
accuracy if the solution is smooth enough. 

The 9-nodes Lagrangian preconditioner is applied in the present paper to the 
Navier-Stokes equations. A Newton’s linearization is carried out on the continuous 
equations. Then, the collocation approximation is described and the resulting 
linearized discrete equations are introduced. The collocation equations are 
preconditioned by the FE method. As the weak formulation automatically 
incorporates natural boundary conditions, a domain decomposition may be 
designed. The physical domain is divided into several macro-domains. Here, the 
interfaces must be parallel to the coordinate axis. Interface conditions are based on 
jumps of the stress vectors and are included in the variational problem. At con- 
vergence, the collocation method achieves C’ continuity of the global solution for 
smooth problems. This is probably the most striking difference between the present 
method and the spectral element technique [18]. 

The extension of the collocation method to thermal problems is done in [S]. 
The method was applied to the simulation of thermal convection arising in the 
industrial process of a molten glass furnace [9]. 

Section 2 gives the basic equations. In Section 3, the mathematical tools are 
defined. Section 4 presents the collocation technique and the preconditioned 
iterative approach. The algorithm is described in Section 5. The domain decomposi- 
tion is analyzed in Section 6. Section 7 reports numerical results for the mono- 
domain approach while Section 8 deals with multi-domain calculation and discusses 
the pros and cons of mono- versus multi-domain computations. 

2. BASIC EQUATIONS 

In this paper, we will deal with the steady state Navier-Stokes equations written 
in stress formulation: 
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p(u.V)u=diva+pf, (2.1.a) 

CT= -pl+2yd, (2.1.b) 

d = 4 [Vu + (Vu)=], (2.l.c) 

div u = 0, (2.1.d) 

where u denotes the velocity field, p the pressure, p the dynamic viscosity, f the 
body forces, IJ the stress tensor, I the unit tensor, d the rate of deformation tensor. 
The superscript T indicates the transpose. Equation (2.1.a) is the momentum equa- 
tion while Eq. (2.1.d) enforces the continuity constraint for incompressible fluids. 
All boldface quantities are vectors; those that are boldface saris serif are tensors. 

Equations (2.1) are solved on the domain Q. The boundary conditions are given 
by the relationship 

Bu=g on ZSZ, (2.2 1 

where 8Q represents the boundary of the domain Q. The boundary conditions are 
of two kinds. Essential (Dirichlet) boundary conditions are applied on dQ,: 

u(r) = gl(r), V/r E X?,. (2.3) 

In (2.3), r denotes the position vector. On &Q\&2, = an,,, natural boundary condi- 
tions apply: 

t(r) = u . n = g2(r), Vr E aS2,, . (2.4) 

In (2.4), t is the stress vector which is related to the stress tensor u through the 
Cauchy principle (first equality in (2.4)). Here, n is the unit outward normal vector 
to im,. 

As Eq. (2.1.a) is nonlinear, a Newton’s linearization process is set up. Assuming 
the Frechet derivatives of the Navier-Stokes operator exist and denoting by 6u and 
6u the variations of the velocity field and the stress tensor, respectively, the 
linearized Navier-Stokes equations are 

p[(u”~V)6u+(6u~V)u”]-div6u=divu”+pf”-p(u”~V)u”, (2.5.a) 

div 6u = - div un, (2.5.b) 

U “+‘=u”+&I, unc1=u”+6u, (2.5.~) 

where the superscript refers to the iteration index of the Newton’s scheme. Equa- 
tions (2.5) are solved with the following boundary conditions: 

6u=O, vr E dR,, (2.6) 

and 

St = 6u. n = -t” + g*(r), Vr65 aa,, (2.7) 

581/95/2-8 
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3. NOTATIONS AND DEFINITIONS 

In this paper, we use the same notations as in [7]. Let us denote by N the couple 
(N,, , N,z) E % x %, where !JI is the set of natural numbers. The discrete Chebyshev 
mesh Q, results from the Cartesian product of one-dimensional Gauss-Lobatto- 
Chebyshev (GLC) quadrature grids, 

6, = 0 G\-,,N,,, i= 1, 2, (3.1) 

with Cf. N li, being the roots of the equation: 

(1 -x2) z-h,,=O, “YE c-1, 11. (3.2) 

In (3.2), Th,, is the derivative of the Chebyshev polynomial of first kind and degree 
N,. As a consequence, the GLC grid is built upon the abscissae: 

nk 
x&=cos--, 

NJ 
k E CO, NJ. (3.3) 

Following Ciarlet [S], $3, is the collection of rectangles whose vertices coincide 
with four neighbouring gridpoints of 8, such that YIN = Ui Ri. Let !J3c,,nj denote 
the space of 2-rectangles of type (n) or two-dimensional Lagrangian finite elements 
which are restricted to nth degree interpolants over each rectangle Rig %i,. Here, 
we will restrict ourselves to n = 1, 2. The space Y,,, will contain all the continuous 
functions in 0 = Q u 8Q, which are polynomials of degree N, in the x, variable. 

Because of the finite element preconditioning of the Chebyshev collocation 
scheme, we need to define a few FE spaces. The velocities will come from 

v2,,= {Wc”@,Iv’R,E~N, ~hl~,Er)wjh 

while the pressure belongs to 

(3.4 

f’,,h= jqhEL’(~)IvRiE~N,qh,R,E(p(,,,,}. (3.5) 

Given a smooth continuous functions g, on iX2,, V,,,(g,) will be the affine space 
of the functions in V2,h which correspond to g, at the essential boundary nodes: 

V2,hk!l)= iUhE V2,/,1Uh(rh)=g,(r,), vrbE02,NnaQc). (3.6) 

If the function g, vanishes, the corresponding subspace will be denoted by Vi,,. 
In (3.6), the grid 8,,, is the set of global nodes for the FE mesh in Q generated 

by the 2-rectangles of type (n), n = 1,2. For n = 1, 8,., z GN. The case n = 2 con- 
sists in the classical 9-nodes Lagrangian element [7]. Associated with these meshes, 
a set of linear functionals l,, N is defined on the global grid 8,,,. At the element 
level, this set corresponds to an nth degree bivariate Lagrange interpolation 
problem. 
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Now, we need to introduce some interpolation operators for the FE technique. 
The notation Z,, will denote the FE interpolation on the Lagrangian basis functions: 

z;,h: CO@) -+ V*,h 
(G,,v)(r,) = l,52,Nv(ri), 
I?,,: CO(Q) + p,,, 

#,hd@i) = 1c51,Ndri)9 

(3.7) 

In (3.7), Z;,, and IZh are the velocity and the pressure interpolators, respectively. 
A particular case occurs when velocities satisfy essential boundary conditions. 
Using the notation IA, we have 

i 

Ii,,: CO(a) + v,,,, 

(G,hv)(fi) = 1 (s2,Nv(r,)t Vrie 8,,, n (f2\dQ,) 

IT, = = U-J, Vr,~~2,,ndQ, (3.8) 

I;.,: CO(B) -3 P,,, 

UY.h4)(r,) = 1 c61,Nq(rr)r Vr,E 8,. 

On %Q,,, stresses are computed by the interpolation operator 3,, defined as follows: 

cc1,,vP(ri) + ~P~CX,,W W,)l .n = gh,), V’ri E CC,,, n aa,, 
Vr, E Q,,, n asz,. (3.9) 

For the sake of brevity, we shall use a scalar product notation for elements in 
L2(!2): 

(u, u) = S, u(r) u(r) dQ. 

On the spectral side, spectral interpolation operators will act from a set of nodal 
values into 9$. The spectral interpolator I,,, is defined by the relations: 

i 

r;: C”(Q) -+ 9) 

I = (Z”,v)(ri) = v(r,), Vr,e 6, 
N 

ZyN: CO(O) + q.‘N 
(3.10) 

L Khq)(r,) = q(rj), Vr, e 8,. 
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4. COLLOCATION METHOD AND FINITE ELEMENT PRECONDITIONING 

4.1. Chebyshev Collocation 

We use orthogonal collocation in the framework of the weighted residual 
methods [a]. The residuals to the p.d.e.3 and to the boundary conditions are 
obtained inserting finite developments of the dependent variables (velocity, 
pressure) in terms of basis functions h,(x,). Denoting by uN such a dependent 
variable, one has 

(4.1) 

with 

h,(z) = 
(l-z’) Th;(Z)(-l)‘+’ 

c;Nf(z - z;) ’ ie CO, Nzl, 

co = 2,: = 2; c, = 1) Vi6 [l, N;- 11. 

The basis functions satisfy the orthogonality property, 

hi(zk) = 6,, (4.3) 

where 6, is the Kronecker symbol. 
It should be noted that the interpolant used in (4.1) is the same as the one used 

by Patera [21] in the Chebyshev spectral element. This equivalence is based on the 
identity 

N Ux,) W)Jl -x2) cv(x)(-l)‘+’ 
1 F ,, = 0 II 2N(x-x,) ’ 

The projection method imposes that the scalar product of the residuals with 
Dirac functions vanishes. Denoting by Res, these residuals, one obtains 

(Re%(r,h &” -r,)) = 0, VriE 8,. (4.4) 

Here, the collocation nodes are those of the GLC grid. Applying the collocation 
procedure to the linearized equations (2.5)-(2.7), the discrete equations are 
obtained: 

= (vp”+p(u”~v) u”- 2 div pd” + pf”}(ri) 

div 6u(ri) = -div u”(r,), Vr,E6jjNQSZ: 

6u(r,) = 0, Vr,e &2, n 8,, 

W,) = &(ri) - t”(ri), Vrie X2, n 6,. 

(4.5 1 
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Introducing LkNS and LFs the linearized Navier-Stokes operator in the left-hand 
side of (4.5) and the Navier-Stokes operator in the right-hand side, respectively, the 
matrix system corresponding to (4.5) takes the form, 

L; 6x = b”, (4.6) 

where 

(4.7) 

x = (u”, p’y 

In (4.7), B, is the collocation approximation of the boundary conditions expressed 
in (4.5). We notice that the right-hand side of (4.6) is the residual to the governing 
equations expressed at the old iteration level. 

The solution of (4.6) presents some major drawbacks: as the Chebyshev colloca- 
tion technique is a global method, the matrix involves a large bandwidth; further- 
more, the viscous part of the operator is conditioned as O(N4) (if N is the number 
of degrees of freedom for a 1D problem) compared to O(N2) for standard finite 
differences or FE methods. Therefore, the collocation system is preconditioned by 
FE in order to decrease the condition number and to benefit from existing codes 
with lower computational work [ 111. 

4.2. Finite Element Preconditioning 

The numerical scheme is based on the preconditioned Richardson iteration 
technique: 

i(sxk+ ’ - 6xk) = -a,(L;. 6xk - b”), (4.8) 

where 

i=L,, 

is a finite element approximate operator. In (4.8), the superscript k denotes the 
Richardson index. The initial guess of (4.8) is computed by 

bxO=I,y,, (4.9) 

where yh is the solution of the FE problem: Find yh= (sub, @ph)T in Vi,,x P,,,? 
such that 
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46dh, vh) + al(6uh; ui, vh) + a,(~:; huh, vh) - (Sph, div vh) 
= -ao(d”,, vh) -a,($; u”,, vh) + (ph, div vh) 

+ a2k2 - t;, Vh) + w;, Vh), 
- (qhr div b,) 

= (qh, div uh), Qv,, q/rE V2,,, x PI,,, Qg, E L*(o). 

The operators a,, i = 0, . . . . 2, are defined: 

a,(&, vh) = P(%, Vv,) + /W’u);, Vv,l, 

u,(wh; uh, v,,) = dtwI, ‘v) uh, vh), 

(4.10) 

a2(u/7, vh) = U,,v,, dl. 

The subsequent iterations are carried out using the relationship: 

Sxk + ’ = Sxk - a,Z,(L”,,) -’ [Z’,(L;: Sxk -b”), Jh(Gtk + t” - g2)]. (4.11) 

The convergence of (4.8) or (4.11) depends strongly on the eigenvalue spectrum of 
L$ Lc. For the Stokes operator, Demaret and Deville [7] showed that the 
9-nodes Lagrangian element yields an optimum rate of convergence when ak is set 
to the value 3. For the Navier-Stokes operator, the first-order derivatives are 
approximated by centered schemes when the standard Galerkin method is applied. 
In [ 123, Deville and Mund show that for the FE preconditioning of the first-order 
derivative by quadratics, static condensation on a uniform mesh leads to a 
staggered scheme. The Fourier analysis yields a spectrum for L;; L, which is 
bounded unlike the FD case and is in the range [ 1, n/4]. Using this result as a 
guideline for the Chebyshev case, the relaxation parameter is slightly decreased with 
increasing Reynolds number. 

5. ALGORITHM 

The preconditioned linearized Navier-Stokes equations (4.11) present two nested 
iterative procedures. The outer loop drives the Newton’s scheme on the linearized 
equations, while the inner loop performs the stationary Richardson iterations where 
the relaxation parameter c(~ is frozen and set to a value close to 3 for most 
problems. 

Using a Pascal-like notation, the algorithm performs the following steps: 

begin 
{ initialisation step > 
n :=O; 
read in an initial guess x0; 
{Newton’s method; variation computation 1 
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repeat 
k :=O; 
{set-up of the initial increment } 
6x: := (L&-l b; or Sxi :=O; 
6x0 := I, sx;; 
repeat {loop on spectral iteration} 

R := b” - LE 6xk; {residual evaluation} 
R, := I,R; 
Sx;+’ := ~3x5; + CQ(L;&’ R,; 
sxk+l :=I,sxi+‘; 
k:=k+ 1; 

““ti* sxk - sxk - ’ 
SXk 

<E~ or IIRII <E~; 

{new solution of the nonlinear equations} 
X II+ 1 := x” + &k; 
R .= LNS~II+ 1. 

N. 

n:=n+S; ’ 

(5.1) 

(5.2) 

until 
x”-x-1 

I I xn max 
< ~3 or IlRNll < ~4; 

end. 

In this algorithm, the notation 6x: is the finite element solution of the iterative 
procedure (4.11). As the convergence radius of the Newton’s method is small, the 
solution for a given Reynolds number is obtained through a sequence of runs: first 
the Stokes solution, followed by intermediate Reynolds number computations. The 
algebraic solver is a sparse matrix Gaussian elimination with minimum degree 
ordering [ 141. The finite element solver treats the global geometry as a whole (even 
if subdomain decomposition is used for the Chebyshev approximation). Typically, 
as the FE solver has a bandwidth of order N, the LU factorisation of L& is 
performed in O(N4) operations for this two-dimensional problem. In the other 
steps of the algorithm, derivatives are computed using fast Chebyshev transforms at 
a cost of O(N* log N) operations. 

6. DOMAIN DECOMPOSITION 

Inspection of Eq. (4.11) shows that natural boundary conditions are taken easily 
into account. Therefore for an interior collocation point, the residual will come 
from the governing equations while for nodal points on d.Q,, both residuals to the 
equations and natural boundary conditions are used to drive the iterations. This 
will be the basis for the domain decomposition technique. 

The domain Q is broken up into several subdomains Q,, p = 1, . . . . L, which have 
the following properties: 
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(i) the sides of every subdomain are parallel to the coordinate axes; 
(ii) two subdomains share only one side (or one point); 
(iii) the number of degrees of freedom in the direction of the common side 

must be the same in each adjacent subdomain. 

These assumptions lead to conforming finite elements in the preconditioner. 
Figure 1 displays a typical domain decomposition satisfying these principles. 

In each macro-domain Q,, a grid Q”, is associated through an affme mapping of 
the reference square. One has 

8,= i, 05, (6.1) 
p=l 

and, similarly, 

The space where collocation solutions are sought is defined by 

P$= {UEC0(i2)~u~QpE9$.& p=l,..., L}, 

where N p denotes the couple (N e,, N c2) E (n x !R. 

(6.2) 

(6.3) 

FIG. 1. Square cavity in presence of an obstacle. The subdomain decomposition is adapted to the 
problem geometry. 
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The interfaces, i.e., the boundaries of each subdomain f2P shared by other sub- 
domains, are denoted by Tp and the internal boundary r with 

r= I,-) l-p. (6.4) 
D=l 

The collocation interpolator is extended to the domain decomposition: 

z;: c”(n) -+ 9% 
Vr;E 8, z 

N 

= (&Ak) = vPiX 

1 

ZyN: CO@) + Ppx 

(I~q)(ri) = dr;), Vri e (fi,. 

(6.5) 

On the internal boundary r, one defines the interpolation operator: 

3; = Jh(ri), Vr;E 02,N n r. (6.6) 

The idea of the interface treatment within the domain decomposition [3] is best 
explained on a scalar model. Let us restrict our attention to the simple problem: 
Find u E H’(a) such that 

-Au= f, on Q, s EL2(Q), 

u(r) = 0, Vr E X2, 
(6.7) 

solved by the weak formulation: 

(Vu, Vu) = (f, u), vu E H’(Q). (6.8) 

By the multidomain decomposition, we wish to solve the problems: Find 
u, E H’(a,), p = 1, ,.., L, such that 

-Au,= f, on Q,, f EL2(Q), 

Up(r) = 0, Vrs&Q 

Up(r) = uk(r), VrErPnrk, (6.9) 

g,(r) = gk(r), VrErPnrk, 

where g, represents the flux of up across the interface. In this case, the flux is the 
normal derivative of U, and is obtained by 

g,(r) = (Vu,. n)(r), Vr E rp. (6.10) 
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The variational form of (6.9))(6.10) becomes: Find up E H1(Qp), p = 1, 
that 

Summing up the L relationships (6.1 l), one obtains 

L, such 

(6.11) 

(6.12) 

where the notation [ ] indicates the jump across the interface of the quantity in 
between the square brackets. In (6.12), the traces of up are supposed to be identical 
on f. Problems (6.8) and (6.12) are equivalent if the sum of interface terms vanish. 
This is enforced through the relation (6.9). 

In the generalization of the previous concepts to the Navier-Stokes equations, 
the associated flux is the stress vector (2.4). Consequently, the preconditioned 
scheme of the linearized Navier-Stokes equations may be written as follows: 

~x”+‘=~x~--~Z~(L;~)~~~ [I’,(L;6xk-bb”),J,(Gtk+t”-ggz), 

3;( [dt” + t”])]. (6.13) 

Th Co continuity of the flux at convergence (if any) involves the C’ continuity 
of the velocities. This can be shown, for example, in Cartesian coordinates 
considering an interface parallel to the J‘ axis. In this case, the continuity of t yields 
the following statements: 

au - p + 2~ s is continuous, 

au au . 
p 5 + z is contmuous. 

( 1 

(6.14) 

(6.15) 

As the pressure is Co continuous in the global preconditioner, Eq. (6.14) implies 
the continuity of &/ax, while the continuity of au/@ ensures that of au/ax (6.15). 
Similar arguments may be developed for an interface parallel to the x axis. One 
concludes that the velocity field belongs to H’(a). 

Remark. The present method is not yet applicable to general curvy domains. 
However, in the spectral approximation, general subdomains can be mapped onto 
the reference square by transfinite interpolation [15]. The spectral equations are 
preconditioned by isoparametric elements in order to treat more complicated 
domains. 



PRECONDITIONED COLLOCATION 371 

7. NUMERICAL TESTS FOR THE MONO-DOMAIN ALGORITHM 

As a theoretical study of the eigenvalue spectrum of the iteration operator for 
nonlinear problems is unavailable, the relaxation parameter is set to c1= f up to a 
Reynolds number of 1000. For higher Reynolds number values, CI is in between 0.55 
and 0.4. 

An analytical solution of the NavierStokes equations is designed in Q = 
[0, l] x [0, l] with p = p = 1. The boundary conditions are imposed via the 
solution: 

u= -cosxsin y, 

v = sin x cos y, 

p = -2 sin x sin y - 0.5(cos2 x + cos2 y), (7.1) 

f,=4cosxsin y, 

f,> = 0. 

The squares of cosine in the pressure will limit the achieved accuracy by the 
preconditioned collocation method. In each computation, N,, = N,, = N. Table I 
gives the maximum error on the velocity components and the pressure, while 
Table II presents the L, norm of the residuals to the momentum and continuity 
equations. The rate of convergence is indeed exponential. 

The next problem is the regularized square cavity already used by Aubert and 
Deville [l]. The velocity field vanishes on the lateral and bottom walls. The upper 
side moves in a horizontal plane such that the velocity components are 

u(x, 1) = 16x*(x- l)*, v(x, l)=O, XE [O, 11. (7.2) 

The Q domain is the unit square [0, l] x [0, 11. The boundary conditions (7.2) 
smooth out first-order singularities at the top corners which are present in the 

TABLE1 

Maximum Errors on the Velocities and Pressure 
as a Function of the Number of Chebyshev 

Polynomials 

Maximum error on the Maximum error 
N velocity components on the pressure 

5 1.02 (-5) 4.86 (-4) 
7 2.82 (-8) 1.95 (-6) 
9 8.59 (-11) 4.71 (-9) 

11 1.65(-13) 9.28 (- 12) 
13 1.05 (-16) 7.11 (-13) 
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TABLE II 

L-2 Norm of the Residuals to the Momentum and Continuity Equa- 
tions as a Function of the Number of Chebyshev Polynomials 

L-2 norm of the residuals L-2 norm of the divergence 
N to the momentum equations of the velocity field 

5 5.99 (-4) 1.06 (-4) 
I 3.40 (-6) 2.88 (-7) 
9 1.47 (-8) 8.53 (- 10) 

11 4.52 ( ~ 11) 2.15(-12) 
13 1.24 (-13) 3.82(-15) 

100, 1000, 2000, 3500, 

4500. Table III reports the minimum value of u along the vertical line across the 

cavity center and its position. Figure 2 shows the horizontal velocity component 

along the vertical line located at mid-cavity. Figure 3 exhibits streamlines at 

Re = 2000, 4500. Table IV presents the numerical values obtained for each vortex. 

In Fig. 4, for Re = 1000, N = 29, the Newton increment 6xk (Eq. (5.2)) is given for 

the velocity components and the pressure as a function of n, when the initial solu- 

tion comes from previous Reynolds number calculations (Re = 500). The con- 

vergence criterion .sj is equal to 10 -‘. It turns out that after the first iterations, 

quadratic convergence is achieved by the Newton process. Figure 5 gives for the 

TABLE III 

For the Regularized Square Cavity Problem, 
ZI,,, Is the Minimum Value of the Horizontal 
Velocity Component along the Mid-cavity Verti- 

cal Line while yrnln Denotes Its Position 

N Re %I,” Ymm 

17 0 -0.1689 0.54855 
17 10 -0.16819 0.54727 
17 100 -0.163381 0.46613 
25 1000 -0.276864 0.20236 
25 2000 -0.297964 0.14363 
29 3500 -0.311155 0.10911 
29 4500 -0.317761 0.09680 

Note. N= N, = N,. yields the number of 
Chebyshev polynomials used at the Reynolds 
number Re. 
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FIG. 2. Horizontal cavity component along the mid-cavity vertical line for Reynolds numbers 0, 100, 
1000, 2000, 3500,450O. 

TABLE IV 

Properties of Primary and Secondary vortices 

Re 

2000 

Primary Y nlm -8.7836 x 1O-2 
Location x, y 0.5294,0.5527 

Top Y ma?. 1.0251 x 1om4 
0.0411,0.8911 

Bottom left Y max 3.5293 x lo-’ 
0.0869, 0.0936 

Bottom right Y max 1.6062 x 10-j 
0.8497, 0.1029 

4500 

-8.8756 x 10 -’ 
0.5206, 0.5391 

6.3715 x 1O-4 
0.0875, 0.9149 

7.8872 x lO-4 
0.0807, 0.1204 

2.1204x lo--’ 
0.8141, 0.0825 
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FIG. 3. Streamlines of the regularized square cavity problem at Reynolds number 2000 (a) and 
4500 (b). 



PRECONDITIONED COLLOCATION 375 

l- 
% -\ . ..* 

-. .\ % 
10-l - 

10-Z - 

lo5 - 

- COR. U 

.--. COR. V 
-.-- COR. P 

2 3 4 

Iteration # 

FIG. 4. Evolution of the Newton increment 6xk with respect to the iteration number n for the 
velocity components and the pressure. The regularized square cavity is solved for Reynolds number loo0 
with N = 29 and ak = 0.5. 
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FIG. 5. Evolution of the corrections in the Richardson process for the tirst four Newton iterations. 
Same problem as in Fig. 4. The full line is for the vertical velocity component while the dashed line refers 
to the pressure. 
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first four Newton iterations the solution of (15 &) ’ R, in (5.1) for the pressure and 
the vertical velocity component. We note that only a few Richardson iterations are 
needed to advance the solution in this case where E, = 10 --3. 

8. NUMERICAL TESTS FOR THE MULTI-DOMAIN ALGORITHM 

Let us first consider the convergence of this multi-domain approach on the 
Stokes equations. The chosen analytical solution is 

u= -cos71.xsin71~, 
2 2 

v=sinnxcosEy, 
2 2 

p= -nsinqxsinny, 
2 2 

f, = 72 cos n x sin 
2 ;YT 

.fv = 0. 

(8.1) 

Frc. 6. Decomposition of a unit square with two subdomains of equal size in the x direction. 
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TABLE V 

Maximum Error on the Velocity and Pressure 
Fields with Respect to the Number of Chebyshev 

Polynomials 

Maximum error on Maximum error 

N, x N, the velocities on the pressure 

lx 13 2.55 (-9) 1.31 (-6) 
9x 13 1.43 (-12) 7.8 (-10) 

11x13 1.36 (- 15) 9.49 (-13) 

Mono-D 
13 x 13 5.20(-15) 1.55 (-11) 

Note. The Stokes problem is solved on two 
equal subdomains in the s direction. 

The Q domain is the unit square and p = 1. Dirichlet conditions are applied at 
the walls. The maximum errors on velocities and pressure are recorded for two 
subdomains of equal size in the x direction (Fig. 6) in Table V and for four equal 
subdomains (Fig. 7) in Table VI. 

For the same number of degrees of freedom, the multidomain computation loses 
six decades with respect to the mono-domain calculation and requires almost 1.5 
times more collocation points in each direction to attain machine accuracy. 
However, from these tables, we can see that the error decay is still exponential. 

FIG. 7. Decomposition of unit square in four equal subdomains. 

581/9512-9 
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TABLE VI 

Maximum Error on the Velocity and Pressure 
Fields with Respect to the Number of Chebyshev 

Polynomials 

Maximum error on Maximum error 

N, x N, the velocities on the pressure 

lx I 2.97 (-9) 5.33 ( - 6) 
9x 9 1.49 (-12) 4.19 (-10) 

11 X I1 7.5 (-16) 9.01(-13) 

Mono-D 
13x 13 5.20 (- 15) 1.55 (-11) 

Note. The Stokes solution is sought on four 
equal subdomains. 

We solve the Navier-Stokes equations for the same analytical solution (8.1) 
and the same subdivision of the computational domain as before. The results are 
summarized in Tables VII and VIII and lead to the same conclusions: the multi- 
domain approach requires more collocation points to reach machine accuracy than 
the mono-domain algorithm, if the sought solution is smooth enough. 

The next problem we want to consider is one where the subdomain decomposi- 
tion is indispensable because of the geometry. The backward facing step was 
proposed as a numerical benchmark at a GAMM workshop. A laminar developed 
profile enters through the inflow section. No-slip boundary conditions are applied 
on the top and bottom walls and at the outflow section, we shall impose: 

v=o, au-o ii-. 
TABLE VII 

Maximum Errors on the Velocity and Pressure 
Fields versus the Number of Chebyshev Polyno- 

mials 

Maximum error on Maximum error 

N,xN> the velocities on the pressure 

lx I 1.76 (- 10) 4.52 (-8) 
9x 9 1.06 (-13) 1.13 (-11) 

11 X 11 2.0 (-15) 7.48 (- 12) 

Mono-D 
13 X 13 3.05 (-16) 7.11 (-13) 

No/e. The Navier-Stokes solution is obtained 
using two equal subdomains in the x direction. 

(8.2) 
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TABLE VIII 

Maximum Errors on the Velocity and Pressure 
Fields versus the Number of Chebyshev Polyno- 

mials 

Maximum error on Maximum error 

N., x N, the velocities on the pressure 

7x 7 1.53 (- 10) 2.33 (-8) 
9x 9 1.06(-13) 1.28 (-11) 

11X11 5.8 (-15) 7.26(-12) 

Mono-D 
13x 13 3.05(-16) 7.11(-13) 

Note. The Navier-Stokes solution is computed 
using four equal subdomains. 

TABLE IX 

Comparison of the Maximum Horizontal Component Normalized by u,,, at 
Various Cross Sections and of the Length of the Recirculation Zone (Re = 50) 

Length of the 
x 3.8 5 7 11 recirculation zone 

Min - 0.04 0 0 0 3 
Max 0.898 0.772 - 

Cl71 

Min - 0.046 0 0 0 2.9 
Max 0.9098 0.781 0.694 0.668 

Present work 

Min - 0.046 0 0 0 2.9 
Max 0.910 0.762 0.694 0.668 

161 
Min -0.035 0 0 0 2.75 
Max 0.885 0.78 0.7 0.665 

1161 
Min -0.049 0 0 0 3.4 
Max 0.914 0.784 0.693 0.669 

c221 
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FIG. 8. Geometry of the backward facing step problem. 

With h = 1 and H= 1.5 (Fig. 8), the Reynolds number is defined by the relation: 

Re= %m,(~ - h) P 
P ’ 

(8.3) 

where u,,, is the maximum value of the entrance velocity profile. 
The computational mesh is given on Fig. 9. All subdomains have 11 collocation 

points in the vertical direction while in the horizontal direction, the number of 
points goes from 11 to 27. Notice that the corner is chosen on an interface in order 
to avoid propagating pressure wiggles in the whole domain. 

For the Stokes flow, the solution is shown on Fig. 10. Zooming the region 
around the corner, the geometrical singularity induces isobar lines which are only 
Co continuous at the subdomain interfaces (Fig. 11). At a Reynolds number of 50, 
Table IX collects the present results and those produced experimentally or by finite 
element methods. There is excellent agreement between our results and those of 
Cliffe et al. [6]. The fundamental difference is that Cliffe et al. used 29,506 degrees 
of freedom while we used only 3000 d.o.f. Therefore, to reach the same prescribed 
level of accuracy, the collocation method needs two to three times less degrees of 
freedom in each space direction than the FE technique. This results in a reduction 
by a factor 24 in the number of operations implied by the LU factorisation and a 
dramatic saving in computing time for this particular step in the algorithm. We 
must mention that for problems where there is no corner singularity, e.g., the 
thermal square cavity [8], the divergence field is at a low level everywhere 
(10 m5-10-6). Across macros boundaries, the divergence is clearly Co continuous 
but not C’. When geometric singularities are present like in the backward facing 
step, a loss of 3 to 4 orders of magnitude in the divergence is observed across inter- 
faces of subdomains including that singularity. On Fig. 12, we show the streamlines 
at Re = 50. 

The final test is concerned with a non-simply connected domain. The geometry 
is shown at Fig. 1. The left corner of the obstacle is at (0.7,0.3) with respect to the 

FIG. 9. Mesh for the backward facing step. 
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FIG. 10. Isolines of horizontal and vertical velocity components for the Stokes flow. 

origin. The width is 0.1 and the height is 0.5. The outer boundary conditions are 
those of the regularized square cavity. The inner boundary conditions are zero 
no-slip wall conditions. Numerical results for Reynolds number 100 are shown in 
Fig. 13. Table X gathers the minimum values of the horizontal velocity component 
along the mid-cavity vertical line. 

9. CONCLUSIONS 

A Chebyshev collocation method is proposed to solve the steady Navier-Stokes 
equations. The collocation method is preconditioned by a finite element technique 
based on biquadratic velocities and bilinear pressures. A Newton’s scheme linearizes 
the equations and the algorithm is composed essentially of two nested loops: the 
outer one manages the Newton process and the inner one carries out the 
Richardson iteration of the preconditioned collocation scheme. 

As finite elements easily incorporate natural boundary conditions, a domain 
decomposition is built up using the jumps of the stress vector at interfaces. Numeri- 
cal tests on mono-domains demonstrate that the method is able to treat nonlinear 
problems with a modest discretization. The capabilities of the subdomain decom- 

TABLEX 

Minimum Value of the Horizontal 
Velocity Component on the 

Vertical Line at Mid-cavity in the 
Presence of an Obstacle 

Re %l,” 

0 -0.12995 
10 -0.13237 

100 -0.12685 
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FIG. 11. Blowup of iso-u (a), u (b), and isobars (c) near the corner of the backward facing step for 
Re=O. 
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1 

FIG. 1 I-Continued 

position are tested on the backward facing step problem and a flow in a cavity 
presenting an obstacle. The multi-domain algorithm presents the good convergence 
properties of the mono-domain approach. 

The present preconditioning technique may be extended to three-dimensional 
problems, where triquadratic and trilinear interpolants can be used for the velocities 
and the pressure, respectively. However, the question of finding the optimal pre- 
conditioner remains open because this preconditioner should satisfy the inf-sup 
condition and provide the solution at a reasonable cost from the computational 
point of view. 

FIG. 12. Streamlines near the corner of the backward facing step, Re = 50. 
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FIG. 13. Isocontours of u (a), c’ (b), p (c) of the regularized square cavity with an obstacle at 
Re = 100. 
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FIG. 13-Continued 
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